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Abstract

Severe weather threatens the reliability of the power supply by damaging the network. In
the case of hurricanes, tens of elements may fail, which would lead to power outages.
Under such circumstances, preventive unit commitment methods can model the proba-
bilistic failure forecasts and minimise the power outages. Preventive stochastic unit com-
mitment is an effective method to consider failure forecasts to reduce the power outage.
Although stochastic unit commitment produces high-quality solutions, it is computation-
ally burdensome. Thus, this paper evaluates proxy deterministic methods with lighter
computational compared with stochastic unit commitment on both the solution time
and quality. Adjusted spinning reserve requirements, engineering judgment-based rules,
and robust preventive operation are among the evaluated methods. Numerical results are
obtained for the synthetic grid on the footprint of Texas with 2000 buses. The results
suggest that while some proxy methods, such as standard spinning-reserve and adjusted
spinning-reserve with 6% to 30% of the spinning capacity, may not be as effective as the
stochastic method, others, such as robust optimisation, deliver the majority of the stochas-
tic benefits with substantially less (85%) computational time. Monte Carlo simulations
are used to evaluate the quality of solutions in reducing the expected unserved load and
over-generation.

1 INTRODUCTION

Historical data indicates that severe weather conditions such as
hurricanes and tornados are the cause of over 90% of black-
outs in the United States [1, 2]. Blackouts occur mainly due
to the unplanned outages of an unforeseen number of grid
components [3]. Any unexpected failure (usually more than a
few components) may result in cascading outages and conclude
in small or large blackouts [4]. Exploring weaknesses and vul-
nerabilities of the network when facing severe weather con-
ditions and planning accordingly to harden relevant compo-
nents, is a long-term solution that can be used in reducing
the impact of hurricanes on power system reliability. How-
ever, short-term emergency plans are needed to better oper-
ate the existing system during severe weather events. This can
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be achieved through preventive operation software tools, such
as preventive unit commitment. The preventive unit commit-
ment can be defined as a security-constrained unit commitment
(SCUC) problem, with some modelling of the weather-induced
damages. As was observed and reported by NERC, preventive
SCUC can enhance the stability and reliability of the network
and reduce the unserved load (UL) [3].
SCUC is an essential tool used by system operators, opti-

mising the cost of electricity generation during a certain time,
while satisfying security requirements. The complex nature of
the unit commitment (UC) problem, due to its numerous tech-
nical constraints, necessitates the schedule to be decided reason-
ably ahead of time and be given to the system operators day(s)
in advance. These models involve some degree of uncertainty in
many parameters that need to be handled.
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Modelling N-1, N-1-1, N-2, and generally N-k reliability
requirements can further complicate SCUC problems, where
given the failure of 1 to k elements, the overall stability and
reliability of the bulk system should be maintained. Despite all
the enhancements and developments over the recent past, the
N-k reliable SCUC problems are still deemed too difficult to
solve for k larger than two. This becomes even more challeng-
ing when k represents transmission lines, and the number of
possible futures that should be considered becomes excessive
[5].
An excellent example of this challenging problem is when

a natural disaster is predicted to impact the network, leading
to a relatively large number of element outages. Evaluating the
weaknesses of system components reveals that the most vul-
nerable elements of power systems, when facing severe weather
conditions such as hurricanes, are transmission and distribution
lines. Modelling such outages can help enhance the reliability of
the system and lead preventive dispatch. Unfortunately, state-
of-the-art academic and industrial tools can only handle up to a
few line outages, for large-scale real power networks [5–7]. This
limitation prevents the development of effective tools for power
system operation during hurricanes, when tens or hundreds of
elements may fail within a few hours. In this effort, the trade-off
between computational burden and model effectiveness plays a
central role.
Stochastic unit commitment (SUC) is a model that was intro-

duced and developed as a promising technique to schedule
power generation in the presence of uncertainties [8–11]. SUC
models the uncertainties through a scenario set within the UC
problem. Modelling the uncertainties explicitly in the UC prob-
lem improves the efficiency and quality of the solution. As a
result, the solution offered by SUC is more effective compared
to other alternative methods in terms of reliability and economic
efficiency. Despite the better quality of the results, two main
concerns come with SUC: its high computational burden, and
efficient scenario generation.
Unfortunately, both the computational burden and scenario

generation complexity are intensified with an increased level
of uncertainties. Enhanced handling of SUC computational
demands has received much attention over the recent past.
Alongside enhancing the formulation of two/multi-stage SUC
to reduce the calculation time [12–14], researchers have exper-
imented with other forms of SUC formulation such as interval
optimisation [15], taking advantage of parallel computing
[16], or using chance-constrained programming techniques
[17, 18]. Despite all the enhancements, SUC remains to be
a computationally challenging problem, demanding a long
run time to be solved. Generally, the calculation time and
the quality of the solution depend on the number of mod-
elled scenarios. For any specific scenario generation method,
modelling a larger number of scenarios will result in higher
quality solutions, but it will cost more in terms of calculation
time and required hardware [19]. Hence, the scenario set
should be selected in a way that the uncertain future is well
represented within a small number of scenarios. Recently, the
multidimensional scenario creation method is developed, which
is shown to have superior performance compared to many

existing techniques for solving preventive unit commitment
during severe weather [20].

2 CONTRIBUTIONS AND
MOTIVATIONS

The industry can enhance the reliability and cost of operating
the grid in the presence of severe weather risk, if preventive
operational scheduling is adopted. While the stochastic methods
seem to be among the most effective options, considering all the
challenges mentioned above for SUC, it cannot yet be adopted
by the industry. Further advancements are needed to speedup
SUC solvers, before computational time drops to below accept-
able thresholds. Therefore, the development of deterministic
proxy rules for preventive SUC is desirable to reduce compu-
tational time and enable immediate adoption by the industry.
Hence, the objective of this paper is to evaluate and tune proxy
deterministic methods to capture the majority of stochastic unit
commitment benefits with a substantially less computational
burden.
The contribution of this paper is to evaluate a number of

deterministic methods for SUC, to enable preventive operation
during hurricanes and other predictable disturbances. The
paper tunes each method to minimise the outages as well as
generation cost. Additionally, the paper compares the results of
different approaches, including the stochastic-based methods
to illustrate the advantages and shortcomings of each proxy
method in the presence of hurricanes. Finally, the paper shows
that with fine-tuned deterministic models, which are ready for
adoption, power outages can be significantly reduced, under
extreme weather conditions, such as hurricanes.
The remainder of this paper is organised as follows. Sec-

tion 3 describes the severe weather and its impacts on the power
system and also offers relevant background information on
stochastic unit commitment. Section 4 introduces the candidate
proxy deterministic methods that are evaluated in this paper.
Section 5 describes the studied test cases, while Section 5 pro-
vides the numerical results for each of the test cases. Section 7
offers a further discussion of the objectives of the paper. Finally,
Section 8 concludes the paper.

3 PROBLEMDESCRIPTION

The objective of this paper is to compare alternative deter-
ministic methods with SUC during an event with numerous
transmission outages. The high-level flowchart for the proposed
algorithm is illustrated in Figure 1. After all the data, including
the network and uncertainties, are loaded, for each method,
including the stochastic and deterministic proxies, the same pro-
cedure, as shown in Figure 1 should be performed. Within the
first section of Figure 1, “Enhance the Configuration Parame-
ters,” for those methods with flexible configuration parameters,
the best value of each parameter is determined. Hence, each
method is tuned to its best performance when solving test cases
with a large number of transmission outages. After the best
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FIGURE 1 The high-level flowchart of the proposed algorithm to evaluate
the best possible performance of each method, when minimising the power
outages in the presence of a large number of possible transmission line failures.
The same procedure should be performed with the stochastic method and all
other deterministic proxies

configuration related to each method is determined, then,
within the second section of the flowchart in Figure 1, the
numerical results evaluate the quality of solutions for several
real-world, large-scale power networks as test cases. For each
method, the quality of the solution and the required hardware
when solving thousands of randomly generated outages (as a
result of possible failures by hurricanes) are compared with
other methods. Note that, employing each method on different
large-scale test cases necessitates overcoming challenges in
their formulation and calculations. However, as the objective
of this paper is to compare methods regarding their results and
expectations, the formulation and algorithms are not discussed
in detail in this paper. Interested readers are referred to [20–22]
for further discussions of the mathematical modelling and
algorithms.
The remainder of this section, first, briefly discusses the

impacts of hurricanes on electric power systems, and, then,
presents stochastic unit commitment as an effective tool that
has recently been proposed for preventive power system oper-
ation during hurricanes [23]. Other deterministic proxies are
described in Section 4.

3.1 Severe weather and power grid

The three main components in the power network include
generation units, transmission lines, and distribution networks.
While severe weather conditions can impact all three sectors, the

level of damage to each can be different based on the weather
conditions. Transmission and distribution networks are more
vulnerable to the wind force, and flooding may aggravate the
situation. On the generation side, the possibility and intensity
of damages to the conventional power plants caused by wind
are low due to the presence of structural and building support
[24]. In this study, we focus on transmission level damages in
developing preventive unit commitment problem. Distribution-
level damages are not explicitly modelled as they cause immi-
nent local power outages due to their radial configuration. The
preventive generation optimisation is ineffective in reducing the
local load loss caused by distribution network failure.
Here, we present an example from Hurricane Irma to jus-

tify this assumption. Reference [25] illustrates the power out-
ages over a day during Hurricane Irma’s impact on the state of
Florida with an animated picture. When the hurricane makes
landfall at the southern shore of Florida, not only does it cause
outages in the area that is directly damaged, but also causes par-
tial outages in other areas of the state. While the local power
outages are likely due to distribution network failures, the power
outage in other parts of the system can only be explained by
propagation of the problem through the transmission network.
This latter category of power outages may be prevented through
a preventive generation scheduling, with a reduced reliance on
the lines that have failed in southern parts of the system. Pre-
venting this type of outage is what the current paper aims to
achieve.
The Hurricane Harvey event analysis report, prepared by the

North American Electric Reliability Corporation (NERC) [3],
mentions that: “Unit commitment and generator dispatch deci-
sions postured the system to withstand the impact of the storm
and recover promptly afterwards that through the preparation
processes they were able to reduce the load loss.” Although
NERC has not specified the method or the practice Electric
Reliability Council of Texas used as preventive operation, the
unpredictable nature of load loss is named as the primary con-
cern in NERC evaluation that requires further examination.
This paper will address NERC’s concern by examining different
methods to find the most suitable ones for each defined pur-
pose. Interested readers are referred to [26], where the paper
investigates the impact of transmission tower damage and fail-
ure to the performance of the power transmission network dur-
ing a hurricane.

3.2 Stochastic unit commitment

This paper is focused on real-world, large-scale networks with
tens of predicted transmission failures. Due to the stochastic
nature of the problem, the stochastic-based optimisation meth-
ods seem to be promising. Stochastic optimisations have been
the subject of interest in the last few decades in its general
form [27, 28]. Later, more studies were conducted on stochas-
tic methods based on the scenario tree used in the unit com-
mitment context [17, 29–31], where the model is derived from
the idea that a finite number of scenarios is possible to be
defined.
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The basic idea of solving SUC is to cover as many realisations
over the uncertain future as possible, to increase the reliability
of the solution while minimising the operating costs. Each
realisation is called a scenario and represents a possible state of
the network under uncertain conditions. The key advantage of
stochastic unit commitment is that uncertainty in each scenario
is assumed to be known. Since uncertainty is discretised as one
scenario, the deterministic unit commitment formulation can be
preserved. In [32], multi-stage stochastic optimisation is com-
pared with deterministic approaches, showing that the stochas-
tic method leads to improved cost. However, the test case in
[32] is limited to a few buses and transmission links. Another
important fact about SUC that has also been mentioned in
[32] is that cost-saving with stochastic optimisation occurs
only if the scenario sets represent the underlying uncertainties
properly. In this regard, [33] shows that if any uncertainty
feature is ignored and not modelled in SUC, a non-negligible
effect on the expected cost may be observed. In addition to the
computational burden and complexity of scenario generation,
as is mentioned in [34], SUC has two more drawbacks. First,
obtaining an accurate probability distribution for the uncer-
tainties can be difficult. Second, these solutions provide only
probabilistic guarantees. In this regard, it is also useful to men-
tion that for large-scale networks with an unusually high level of
uncertainties, the scenario creation, reduction and aggregation
is even more challenging, as the number of possible scenarios is
practically infinite. The complexity of scenario generation and
computational burden of SUC motivate this paper to evaluate
proxy deterministic methods with easier modelling procedure
and reduced calculation with nearly the same solution quality.
These proxy methods are described in Section 4.
Considering that our test-cases are defined based on large-

scale networks, the formulation of the SUC and scenario
creation methods are the main challenges in this approach.
In this paper, the authors used the complete form of SUC
formulation based on power transfer distribution factors as
described in [22], and the scenario generation method referred
to as “multidimensional scenario selection (MDSS),” which
is presented in [20]. In MDSS, multiple dimensions of the
available data regarding each uncertainty such as failure chance,
transmission capacity, and operation point are taken into
account to generate the most efficient set of scenarios. The
compact form of SUC, as in [22], is presented here to discuss
the key model components briefly. The objective function,
which should be minimised, represents the expected cost under
all the modelled scenarios, including operating costs and penalty
for load shedding and over-generation:

Minimise

∑
s

{
𝜋(s)

∑
t

[∑
g

(
C(s,t,g)

(
xs,t , us,t

))
+
∑
n

(
c lsh(s,t,n)

(
xs,t , us,t

))

+
∑
g

(
c
og
(s,t,g)

(
xs,t , us,t

))]}
, (1)

where s, g, t, and n are the indices for scenario, generation
unit, time, and bus number, respectively. Moreover,C(s,t,g), c

og
(s,t,g)

and c lsh(s,t,n) represent the generation cost, over-generation
penalty, and load shedding penalty, respectively. The generation
cost itself is a function of the generated power, no-load fixed
cost, start-up and shut-down costs for all units where appli-
cable. It should be mentioned that as the load shedding and
over-generation penalties are fairly large in comparison with
energy generation cost, the objective function is dominated
by penalty components. Hence, solving the SUC essentially
minimises the unserved load (UL) and over-generation (OG).
The problem includes regular equality and inequality constraints
as:

gs,t
(
xs,t , us,t

)
≤ 0, (2)

hs,t
(
xs,t , us,t

)
= 0, (3)

where gs,t covers constraints regarding the maximum thermal
capacity of transmission lines, minimum down and minimum
up times of generators, ramping limits of generating units, gen-
eration minimum and maximum capacities. hs,t contains nodal
or global load balance, power flow equations, and a set of
equations that describes the effect of line outages. The main
decision variables are commitment status (first stage variable)
and generation dispatch (second stage variables) for each unit,
xs,t , us,t , that minimises the objective cost function. Note that
us,t , as first stage variables, should remain the same across all
scenarios.
The major difference between the formulation in this study

and other two-stage stochastic unit commitment formulations is
the inclusion of the effects of line outages in this paper. The final
flow of each line, including the normal operation flow plus the
effect of outages, should be less than the line’s thermal capacity
as in Equation (4):

−Fmax
(m) ≤ F(s,m,t ) ≤ Fmax

(m) , ∀ s, t, m (4)

where F is the actual line flow, Fmax is the capacity limit of the
line, and m is the line index. F(s,m,t ) is calculated through the
net nodal injection vector and power transfer distribution factor
matrix, PTDF [35]. The line outage effect for each s, t and, m is
calculated as shown in Equation (5):

F(s, m,t ) = (PTDF(m) × P(s,t ) )

+
∑

o∈O(s,t )

(
PTDF(m, frm(o) ) − (PTDF(m,t o(o) )

)
FC(s,t,o)

(5)

The first part of the right-hand side of Equation (5) repre-
sents the normal line power flow as a result of nodal injec-
tions (includes load, generation, over-generation as load, and
load shedding as a negative load). The second part takes the
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impact of line outages into account. Note that FC(s,t,o) exempli-
fies the flow cancelling transaction, which is calculated so that
injecting FC(s,t,o) to the “from” bus of line o, and withdrawing
FC(s,t,o) from the “to” bus of line “o,” has the same effect on the
rest of the network as the outage of line “o.” To calculate the
FC(s,t,o) that is used in Equation (5), a system of equations must
be solved. As these equations are dependent on operation point,
they are deployed into the problem through equality constraints.
This way, they will be automatically solved by the optimiser to
calculate FC(s,t,o) for all temporal outages in each scenario that is
defined by O(s,t ).

(PTDF(o) × P(s,t ) ) − FC(s,t,o) ∀, s, t

+
∑

o′∈O(s,t )

(
PTDF(

o, frm(o′ )
) ∀ o ∈ O(s,t )

−

(
PTDF(

o,t o(o′ )
)) FC(s,t,o′ )

(6)

For more details on flow cancelling transactions, which is an
extension of line outage distribution factors, refer to [29].

4 CANDIDATE PROXY RULES

Different methods can be employed to handle uncertainties in
the preventive unit commitment model. In general, it is possible
to divide methods into two main categories: (1) Explicit mod-
elling of the uncertainties, and (2) proxy methods. Generally, the
first category yields more efficient solutions but at the cost of
more demanding computation and added modelling complex-
ity. In this paper, four proxy methods are evaluated.

4.1 Standard spinning reserve

Amost common approach to address the uncertainties in indus-
trial applications is committing extra generation capacity, known
as a spinning reserve [36, 37]. Spinning reserve requirements
are simple to implement but not economically efficient, even
when the uncertainties are limited [9]. For the case of severe
weather, due to a large number of impacted elements, it is
expected that relying solely on additional reserve requirements
(both spinning and non-spinning reserves) is not going to be
efficient. In standard spinning reserve (S-SR) or business as
usual method, the operator does not contemplate the informa-
tion regarding extreme uncertainties and plans the day-ahead
generation scheduling as a typical day with some level of uncer-
tainties. Reserve requirements can be used to handle a limited
level of uncertainties [36–40]. The main advantage of utilising
spinning reserve is the protection it gives against a slight degree
of uncertainty while preserving the deterministic interpretation
of the problem [41–45]. In this study, the required spinning
reserve is assumed to be 6% of the total hourly demand in the
network.

4.2 Optimised spinning reserve

Optimised spinning reserve (O-SR) is similar to the S-SR
method, except that the level of required spinning reserve is
optimised to compensate hurricane-induced line outages. Gen-
erally, the deterministic constraints can be adjusted in order to
handle a defined uncertainty [38, 46, 47]. For this study, as the
deterministic constraint is the level of the reserve requirement,
and the predicted outages are more than usual, the required
reserve should be higher than the standard value and needs to
be optimised for the test case.
More than a few studies have concentrated on optimising the

spinning reserve requirements in order to reduce the value of
lost load (unserved load) [8], and [18]. In [48], the objective is to
optimise the spinning reserve in a system with high penetration
of wind power. In [49], (meta-) heuristic methods are used for
optimising the reserve requirement. References [50] and [51] are
studies that include more details and involve constraints such as
consumer’s required reliability. In [52], the same as in this study,
authors claim that with the modern requirements in the power
network, the generation cost minimisation cannot be assumed
as the best goal to solve the UC problem when minimising the
generation cost may apply other costs such as pollution to the
total operation cost. Authors of [52] try to evaluate the relia-
bility of the unit commitment problem with spinning reserve
through the swarm intelligent methods. In [52], it is mentioned
that as the future scope of their work, stochastic approaches can
be utilised to consider multiple scenarios to improve the overall
efficiency. However, the difference between [52] and the cur-
rent study is that in [52] the probability of generation failures
are included while in this paper focuses on multiple possible
line failures.
In O-SR, the spinning reserve is flexible and can be any value

from 0% of the hourly load to the maximum level that the
network is capable of supplying. For our test cases, the maxi-
mum possible spinning reserve is set to 33% of the total hourly
load. The network and generation constraints do not allow for
reserves, more than 33% of the hourly demand, as it does not
yield a feasible solution. Note that 33% is the maximum possi-
ble value of reserve when there is no line outage in the network,
and any line outage may reduce this threshold.

4.3 Worst possible case

The worst possible case (WPC) is a method defined based on
robust optimisation [53, 54]. While robust optimisation and
dynamic robust optimisation are extremely conservative meth-
ods, defined minimisation of maximums [55–57], it is not pos-
sible to evaluate all the possible futures representing all the
uncertainties, as mentioned before. Based on the concept of
multi-stage robust unit commitment as introduced and used
in [34, 58–60], in this paper, the integer commitment variables
are assumed to be the first-stage variables, and real-generation
scheduled power as the second-stage variables.
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It is assumed that the worst future case in terms of UL and
OG happens when the maximum possible number of lines fail.
With this assumption, the worst case occurs when any line with
a minimum failure chance is taken out of the network. The result
is a deterministic temporal configuration for the network, with
the topology changing over time when each line collapses. The
failures, though, are deterministic, leading to only one topology
trajectory. Hence, the model is comparable to the preventive
stochastic optimisation with one scenario, and that single sce-
nario is the worst possible case. It should be mentioned that
in the above definition, the failure threshold is assumed to be
0%, which means any failure chance of more than 0% at any
time will be assumed as a certain failure. However, it is possible
to consider the value assigned to the threshold as a configura-
tion parameter. Whenever the failure chance of any line is more
than the defined threshold, that line would be assumed offline.
Increasing the value of the mentioned configuration parameter
from 0% to 100% means shifting from applying extremely con-
servative constraints to applying no constraint at all (this is later
explained with examples). This may help in enhancing the over-
all efficiency of the WPC method by reducing the unnecessary
level of conservativeness and the overall cost of system opera-
tion [61].

4.4 Engineering judgment

As tens of line outages are predicted for the network, a sug-
gested solution by experienced operators can be to ignore the
operation cost and solve the problem just to minimise the
unserved load. We refer to this as “engineering judgment” in
this paper. While tens of lines may fail, a sensible decision
can be to keep all the generation units available at all times.
Hence, engineering judgment (EJ) reflects a strategy where all
units are available. While EJ supports the minimisation of the
unserved load, it can harm the network with side effects such
as over-generation. Over-generation happens because of the
sudden disconnection of operating generation units, and its
adverse impacts on the system can be as bad as the unserved
loads.
In EJ, we assume all generation units are available to generate

at any time except for those that are already disconnected from
the network or operating in the islanded part of the network.
The least time to shut down the unit is assumed to be one step of
defined time (mostly an hour), and during that one unit of time,
the generated power is assumed as OG.Note that the generation
units should somehow waste OG on site.

5 TEST CASES

The network that is studied in this paper is a synthetic grid on
the footprint of Texas. This system includes 2000 buses, 3206
transmission lines, and 540 generators with characteristics as
described in [62, 63]. Different test cases are outcomes of dif-
ferent simulated hurricanes that impact the grid. Hence, in addi-
tion to electrical data, the geographical data that represents the

FIGURE 2 The default layout of the power network used in test cases. For
each test case, the effect of one simulated hurricane on this network is estimated

FIGURE 3 Temporal lines failure chances (%) corresponding to test case
1. A total number of affected transmission lines is 33. Assuming the effective-
time duration of hurricane is equal to three hours, the total number of possible
futures is 7.4E + 19

location of each element must be included as well. The electrical
components of the network are shown in Figure 2.
For a comprehensive evaluation, different synthetic hurri-

canes are considered to pass through the network from different
sides and affect the network. It is consistent with the historical
data available to assume that the hurricane does not damage the
generators directly; instead, their outages are modelled through
the transmission lines connecting them to the bulk system. The
chance of damage to different elements of the transmission net-
work is then calculated as a temporal failure probability curve
for every transmission line, as is shown in Figure 3 related to
the first hurricane.
Synthetic hurricanes are inspired by real hurricanes such as

Irma and Harvey, to represent realistic test cases. There are
seven different tracks for hurricanes; each representing a dif-
ferent path, time, and intensity (wind speed and direction). In
Table 1, the label number of lines that are vulnerable for each
test case is displayed.
As it can be seen in Table 1, test cases 3 and 4 cover the same

set of outages and failure chances; however, in test case 4, the
hurricane makes landfall 12 h later than in that of test case 3.
Similarly, all the failures in test case 7 are also covered in test
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TABLE 1 Test cases and corresponding line failures

Test case

Maximum

number of

possible outages Affected lines

1 33 550, 566, 580, 581, 619, 686, 687, 689,
735, 767, 768, 779, 805, 1684, 1795,
1960, 2090, 2095, 2107, 2177, 2240,
2241, 2244, 2265, 2267, 2300, 2355,
2356, 2451, 2453, 2574, 2843, 2980

2 34 549, 550, 566, 581, 619, 686, 687, 689,
736, 767, 768, 779, 805, 816, 1682,
1684, 1795, 1919, 1921, 1960, 2090,
2240, 2241, 2244, 2265, 2267, 2300,
2355, 2356, 2451, 2574, 2843, 2980

3 45 550, 566, 581, 619, 686, 687, 689, 736,
767, 768, 779, 805, 816, 1682, 1684,
1685, 1705, 1718, 1742, 1744, 1756,
1758, 1795, 1919, 1920, 1921, 1960,
1968, 2017, 2068, 2090, 2177, 2240,
2241, 2244, 2265, 2267, 2300, 2355,
2356, 2358, 2451, 2508, 2843, 2980

4 45 550, 566, 581, 619, 686, 687, 689, 736,
767, 768, 779, 805, 816, 1682, 1684,
1685, 1705, 1718, 1742, 1744, 1756,
1758, 1795, 1919, 1920, 1921, 1960,
1968, 2017, 2068, 2090, 2177, 2240,
2241, 2244, 2265, 2267, 2300, 2355,
2356, 2358, 2451, 2508, 2843, 2980

5 28 550, 566, 581, 619, 686, 687, 689, 767,
768, 779, 805, 816, 1684, 1795,
1960, 2090, 2177, 2240, 2241, 2244,
2265, 2267, 2300, 2355, 2356, 2451,
2508, 2980

6 39 566, 581, 619, 686, 687, 689, 767, 768,
773, 779, 805, 816, 1682, 1718,
1743, 1758, 1795, 1815, 1879, 1919,
1921, 1960, 1968, 1971, 1989, 2068,
2071, 2090, 2240, 2241, 2244, 2265,
2267, 2300, 2355, 2356, 2451, 2508,
2980

7 13 689, 816, 1718, 1743, 1795, 2068,
2090, 2240, 2241, 2300, 2355, 2451,
2980

case 6. The difference between these two test cases is that the
failure chances covered in test case 7 are not less than 50%. As
for the utilised daily load profile, it is obtained from CAISO for
a month and calculated to represent hourly load for a day and is
available in [64].

6 NUMERICAL RESULTS

In order to provide a comprehensive evaluation of each method,
the impacts of the influencing factor are studied in separate sub-
sections. The first subsection assesses the impacts of different
method configurations. To do so, one test case is selected, and
the problem is solved using various methods, including SUC and
other alternative methods, each with a variety of configurations.

The result of this section helps fine-tune each method in solving
preventive unit commitment. In the second subsection, differ-
ent test cases are picked and solved by all methods, each with its
best configuration parameters. The results of this section show-
case the overall performance and efficiency of each method in
solving preventive unit commitment with a high number of pos-
sible line failures. Finally, in the last subsection, other aspects
of the results are discussed. It should be mentioned that while
the main performance metric of the first two sections is the
unserved load plus the over-generation, UL+OG, the last sub-
section focuses on other indicators, such as computation time
and required hardware.
In each subsection, the preventive unit commitment problem

is solved using different methods, and the obtained day-ahead
commitment is considered as the calculated solution. Then, by
deploying the Monte Carlo procedure, the obtained commit-
ment is tested with 1000 randomly selected realisations of the
future in order to calculate the expected values of UL, OG, and
operation cost. It should be mentioned that to keep the compar-
ison fair, those 1000-realizations are the same for all methods
and subsections within each of the test cases.
It worth mentioning that for all the methods, including the

SUC and deterministic proxies, the same set of constraints is
applied to the unit commitment problem with two exceptions.
The common constraints between all methods include: the ther-
mal capacity of lines, generation and demand power balance,
generation minimum and maximum capacities, ramp-up and
ramp-down of generation units, and minimum up and down
times of generation units. The first exception is an additional set
of constraints assuring the commitment variable be the same
in all scenarios is SUC (as the commitment status variable is
assumed as the first stage variable in the stochastic model), and
the second exception is an additional set of constraints regard-
ing the minimum required spinning reserves applied to the stan-
dard spinning reserve and optimised spinning reserve methods.
As mentioned before, all methods are formulated and modelled
using power transfer distribution factors. Moreover, for each
method, all the constraints must be satisfied.

6.1 Different configurations for each
method

Asmentioned above, in this subsection, all the methods are used
to solve the same test case (test case #1), and each method has
different configurations. In conformity with the nature of the
methods, the standard spinning reserve and engineering judg-
ment do not have any adjustable configuration parameter. In the
O-SR, the configuration parameter is the level of the required
spinning reserve. As the objective is to reduce the UL+OG as
much as possible, the test case is solved with different levels of
the spinning reserve from 0% to 30% in the steps of 5%. In
Figure 4, the green line illustrates the calculated expected value
of UL+OG for the O-SR method with different levels of the
spinning reserve as the constraint. Based on simulation results,
and as was expected, increasing the spinning reserve reduces the
expected UL. The expected value of UL+OG also decreases by
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FIGURE 4 Results: Different configurations for O-SR andWPCmethods.
In O-SR, by increasing the reserve value, the UL+OG drops, UL portion of
UL+OG falls, and OG portion raises

increasing the reserve from 0% to 30%. In numbers, the lowest
expected value belongs to 30% of reserves, with 4278 MWh of
UL+OG.
As can be seen in Figure 4, adding more reserve capacity

after 20% of the predicted demand, does not show any sig-
nificant improvement. In order to better clarify, in Figure 4, at
each value of reserve, the UL and OG are plotted separately
as blue and purple bars, respectively. By increasing the assigned
reserve value, UL is reduced both in absolute value and as a frac-
tion of total violations (total violations = UL+OG). While the
OG fraction of total violations increases at all steps by increas-
ing the reserve capacity, its absolute value does not follow the
same pattern. OG jumps up from 1.6 to 5.7 GWh when going
from no-reserve to 5%, and then falls steadily until 25% of the
reserve and raises again at 30%. The results suggest that 25% of
the spinning reserve is a good value to consider in this method
as it minimises the OG. Moreover, 25% is a safe value as it is
possible that under more extreme circumstances, 30% reserve
requirements would result in infeasibility issues, because the sys-
tem may not have such large capacity margins.
With defined WPC method, the preventive unit commitment

is a single scenario deterministic form of stochastic unit com-
mitment, in which any line at high enough risk, is assumed to
fail with certainty. As was mentioned before, the value of the
acceptable threshold for risk is the configuration parameter of
this method. A threshold of 0% would model any failure chance
as a certain failure, which results in the worst possible case in the
future, with the largest number of failures. Similarly, a threshold
of 100% would consider a line as failed only if the predicted
failure chance is higher than 100%, and that never happens (no
line fails). Thus, 0% is the most conservative and pessimistic
approach, while 100% is the most optimistic one. However, any
value in between can be assigned to the threshold to achieve a
trade-off between conservative and optimistic views. To eval-
uate the effect of the threshold on the results, the threshold
value is increased from 0% to 100% in eight steps, and then the
calculated commitments are tested to determine the expected
value of UL+OG. The results can be seen as the black line in

FIGURE 5 Effect of increasing the number of scenarios in SUC on
UL+OG. Orange bars represent the possible values that were obtained during
the Monte Carlo process

Figure 4. As can be seen, the best outcome is obtained when the
threshold is 0%, which means only the most pessimistic future
is considered. Considering the best configuration for both O-SR
and WPC, the expected value of the UL+OG is less with WPS.
From now on, 0% is assumed as the best configuration for the
WPC method.
In SUC, while different parameters can be assumed as config-

uration parameters, the key configuration parameter is consid-
ered to be the number of modelled scenarios. Other parameters
such as scenario generation algorithm, reduction and aggrega-
tion, penalty cost for load shedding and over-generation, and
programming technique are assumed to be set at their best con-
figurations for any number of scenarios. It is worth mention-
ing that different techniques for scenario generation/reduction
such as fast forward selection (FFS) [65], simultaneous back-
ward reduction [65, 66], and forward selection in recourse clus-
ters (FSRC) [67] were tested, and multidimensional scenario
selection (MDSS) offered the best performance among all [20].
There is always a trade-off between the number of scenar-

ios and the quality of the solution; more scenarios require
more calculations but will yield a more efficient solution. Yet,
it is necessary to evaluate the quality of the solution, calcula-
tion time, and required hardware when selecting the number
of scenarios. After running a few assessments, by considering
the required calculation power and hardware, authors decided
to use ten scenarios for the SUC method. Figure 5 illustrates
the effect that the number of scenarios has on the range of
calculated UL+OG. By increasing the number of scenarios,
not only the expected value of UL+OG reduced but also the
minimum and maximum value of the objective function were
decreased.

6.2 Different test cases with each method

As a reminder from the previous section, in O-SR, the reserve
requirement is considered 25% of hourly demand; in WPC, the
threshold of failure is assumed to be 0%, while the spinning
reserve is assumed to be 6%; finally, in SUC, ten scenarios are
examined. For each method and each test case, the minimum,
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TABLE 2 Expected value of results for all the methods (with their best configurations) and all test cases

UL+OG

Min Average Max Min Average Max Average Total Energy Penalty

S-SR 1 77 3,252 15,314 0 5,348 17,916 8,600 $272,776,451 $17,280,935 $255,495,516

O-SR 1 0 377 10,136 0 3,937 17,179 4,313 $145,345,160 $17,205,450 $128,139,710

EJ 1 0 37 2,242 416 4,620 18,651 4,657 $155,802,034 $17,456,807 $138,345,227

WPC 1 0 276 2,264 0 18 341 294 $26,293,707 $17,568,683 $8,725,024

SUC 1 0 61 2,242 0 1 242 62 $19,342,724 $17,499,607 $1,843,117

S-SR 2 229 4,245 9,922 0 7,384 14,036 11,629 $362,877,644 $17,401,916 $345,475,728

O-SR 2 0 303 3,631 0 5,613 12,067 5,916 $193,142,852 $17,388,765 $175,754,087

EJ 2 0 32 2,654 413 6,462 15,294 6,494 $210,494,319 $17,582,540 $192,911,779

WPC 2 173 903 4,349 0 91 1,061 994 $46,997,007 $17,462,072 $29,534,935

SUC 2 0 196 2,657 0 62 945 257 $25,068,379 $17,419,826 $7,648,554

S-SR 3 229 4,245 9,922 308 7,476 40,485 11,721 $365,780,939 $17,568,251 $348,212,689

O-SR 3 0 3,174 25,511 0 2,928 7,297 6,101 $198,447,080 $17,188,629 $181,258,451

EJ 3 0 25 1,591 386 3,518 8,019 3,543 $122,640,177 $17,373,285 $105,266,892

WPC 3 0 463 8,809 0 24 346 487 $31,967,361 $17,510,411 $14,456,951

SUC 3 0 119 5,813 0 27 831 146 $21,744,368 $17,398,438 $4,345,930

S-SR 4 0 3,272 22,799 0 1,976 4,712 5,247 $172,833,021 $16,941,661 $155,891,359

O-SR 4 0 1,418 15,373 0 1,492 3,802 2,910 $103,332,018 $16,888,139 $86,443,880

EJ 4 0 20 1,035 405 1,935 4,263 1,955 $75,311,917 $17,234,445 $58,077,472

WPC 4 0 254 5,488 0 17 333 271 $25,269,269 $17,224,386 $8,044,883

SUC 4 19 92 3,497 0 5 268 97 $20,012,032 $17,116,405 $2,895,627

S-SR 5 0 1,777 19,585 0 2,584 5,412 4,361 $146,587,264 $17,033,305 $129,553,959

O-SR 5 0 380 15,248 0 1,902 4,680 2,282 $84,746,988 $16,947,297 $67,799,691

EJ 5 0 8 1,031 407 2,352 5,269 2,360 $87,426,516 $17,304,465 $70,122,051

WPC 5 0 74 2,614 0 10 201 84 $19,678,268 $17,190,122 $2,488,146

SUC 5 11 26 2,132 0 4 189 31 $18,079,493 $17,171,523 $907,970

S-SR 6 496 9,266 41,774 0 2,326 6,097 11,592 $361,286,189 $16,924,743 $344,361,446

O-SR 6 324 3,293 29,919 0 1,882 5,508 5,174 $170,686,899 $16,963,384 $153,723,515

EJ 6 0 27 1,418 406 2,271 5,169 2,298 $85,585,855 $17,326,296 $68,259,559

WPC 6 0 726 5,171 0 32 482 758 $39,798,018 $17,278,127 $22,519,891

SUC 6 0 220 3,707 0 32 507 252 $24,726,140 $17,236,402 $7,489,738

S-SR 7 529 5,542 10,220 0 2,148 4,359 7,689 245,411,670 $16,972,930 $228,438,740

O-SR 7 377 1,580 2,628 0 1,699 3,119 3,279 114,363,866 $16,937,914 $97,425,952

EJ 7 0 0 13 408 1,977 3,386 1,977 76,003,201 $17,261,850 $58,741,351

WPC 7 0 585 4,035 0 1 36 586 34,463,596 $17,061,624 $17,401,973

SUC 7 0 585 3,828 0 0 11 585 34,434,864 $17,068,748 $17,366,116

UL (MWhr) OG (MWhr) Cost ($)
Method Test Case 

maximum, and expected value of UL and OG are calculated.
In addition to those values, the operation cost is calculated as
well. The results are summarised in Table 2, where, min, aver-
age, and max represent the minimum, expected, and maximum
values among 1000 Monte Carlo random realisations. In eco-
nomic terms, Table 2 includes the cost of energy denoting the
actual cost of electricity generation, penalty cost indicating the
economic expense imposed on the system because of UL and
OG, and the total cost, which is the summation of energy gen-
eration cost and penalty costs.
The first and most evident conclusion from Table 2 is that

SUC is always the best method in terms of reducing UL+OG.
Calculations show that SUC can reduce the UL+OG by at least

95% in comparison with S-SR. In terms of cost, the real energy
generation cost of the SUC solution is slightly higher than that
of S-SR, as more load is served in the SUC method. The penalty
cost in S-SR is much higher than the SUC and any other method.
SUC is also the best method when OG matters more than UL
because of possible long-term damages to the generation units.
The expected value of OG is negligible when using SUC, in all
the test cases.
Knowing that the total daily demand for electricity is

1.3 TWh, the S-SR approach results in UL of 0.33–0.88% of
total daily demanded energy. While these numbers do not seem
significant, having access to electricity becomes critical during
severe weather conditions. Using any other approach can at least
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reduce that value by about 50%. This reduction in UL+OG can
be as significant as 95% and 91% using SUC and WPC, respec-
tively. These numbers are significant, considering that they are
obtained only through better operation software, which does
not apply any additional hardening cost to the system.
While the O-SR shares the same principle as S-SR, because

of more spinning reserve (25% compared to 6% of hourly
demand), the obtained solution is more than 50% improved
in terms of the average value of UL+OG. Carefully check-
ing Table 2 also reveals that this improvement mostly occurs
because of less UL. Using more reserve leads to a reduction in
the expected OG, but the reduction in UL is even more signifi-
cant.
As expected, engineering judgment (EJ), which keeps all the

units available, is the best method among all to minimise the UL.
For each test case, the lowest expected value of UL is realised
through EJ. The potential of EJ on reducing UL is demonstrated
in the last test case, where the expected UL is as low as zero. On
the other hand, having all generating units available results in
OG value that is not efficient. Overall, the EJ approach is better
than the O-SR and S-SR, but it cannot beat WPC and SUC. It
should be noted that, before using this approach to reduce the
UL, the OG problem should be handled to prevent damage to
the generation units, as a damaged generator may need days or
weeks to be fixed. This can reduce the reliability of the electricity
supply for days after the severe weather event.
The WPC is not the best method in any case, yet its perfor-

mance is very close to the SUC. A closer look at the last test
case exposes that the maximum possible value of UL is the only
major difference between SUC and WPC. While the expected
(average) value of UL is 585 MWh in both methods, the maxi-
mum possible value is better with SUC.
The same advantage for SUC over WPC can be seen in all

other test cases. In comparison between SUC and WPC, as the
two best methods to improve the reliability of the electricity sup-
ply, in most cases, SUC has a non-trivial lead over WPC except
for the last test case. To justify that, note that while in the first
six test cases, the failure chances can be any value between 0%
and 100%, in the last test case, it only includes those predictions
with more than 50% of chance of an outage. Having uncertain-
ties with a higher chance of failure makes the uncertain possible
future closer to the worst possible case. As in WPC, only the
worst possible case is considered, it is efficient for this test case.
Note that as one of the modelled scenarios in the SUC is the
worst possible case, SUC still shows better efficiency thanWPC,
but its advantages over WPC are less noticeable than other test
cases.
Finally, using the UL+OG as the primary metric of mea-

suring the efficiency of the solutions, Table 2 compares dif-
ferent methods with one another. For example, SUC can
reduce the UL+OG by a factor of 59% relative to the
WPC. In the same way, using the O-SR will result in 763%
more UL+OG relative to the WPC. As can be seen in
Table 3, SUC has all negative values in its column, which
means it has lower UL+OG in comparison with any other
method.

TABLE 3 The efficiency of different methods with respect to each other

with respect to

UL +OG in: ↓ S-SR O-SR EJ WPC SUC

S-SR — 103% 161% 1652% 4153%

O-SR −51% — 29% 763% 1996%

EJ −62% −22% – 570% 1528%

WPC −94% −88% −85% — 143%

SUC −98% −95% −94% −59% —

6.3 Other aspects of comparison

While the quality of the solution in reducing the expected value
of UL+OG is one of the important criteria for method selec-
tion, other important features should also be carefully studied.
These features include computational time and computational
power (required hardware). Among evaluated methods, S-SR
and O-SR do not model the failure chance directly into the
problem. In those two methods, the operator simply solves the
unit commitment problem once, and the solution is utilised for
any outage scenario. Although the quality of the solution pro-
vided by those methods is not the same as SUC or WPC, they
have some significant advantages over the other two methods.
As the uncertainty (failure data) is not modelled explicitly in S-
SR and O-SR, there is no need to calculate the outage chance
of lines by simulating the hurricane and its effect on different
components of the network. Not only does this directly reduce
the total required calculation load significantly, but it also pre-
vents making bad decisions because of errors in weather/outage
prediction and calculation. Moreover, there is no need to recal-
culate the preventive unit commitment problem for different
hurricanes.
As mentioned before, when OG is less critical than UL, the

EJ is the best method to minimise the UL. EJ has one more
advantage over all others; EJ does not need any computation.
It should be noted that while we assumed all the generation
units are online in EJ, this may not necessarily be possible. There
might be generation units that cannot accept the risk of OG, in
which case, the principle can be applied to the maximum num-
ber of generating units with the capability of handling OG. Still,
the same advantages would be expected for this method over all
others.
Finally, to shed light on the calculation burden and hard-

ware requirements, an average calculation time, the minimum
required memory, and dependency of the solution to the change
in failure prediction is summarised in Table 4. Note that while
the calculation times for the S-SR, O-SR, and EJ are inde-
pendent of outage data, the calculation times for WPC and
SUC highly depend on outage data and failure possibilities. In
general, an increase in the number of possible outages results
in longer calculation time and more required memory. The
reported values forWPC and SUCmethods are the average time
required to solve all the test cases. For example, in SUC, while
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TABLE 4 Calculation requirements of different methods

Method

Calculation

time

Required

memory

Recalculate if failure

prediction changed?

S-SR 14 min >4 GB No

O-SR 45 min >4 GB No

EJ 0 0 No

WPC 3 h >24 GB Yes

SUC 22 h >32 GB Yes

the calculation time for the last test case number 7 is less than
2 h, it is more than 30 h for test case number 3.

6.4 Simulation environment

While there are a number of appropriate software environ-
ment options, authors chose to use Oracle Java in combination
with IBM CPLEX as the simulation environment. Java is fast
and offers flexible memory management [68, 69]. The machine
that is used to run the simulations utilises Intel Core i7-7700
CPU @3.60 GHz as a processor combined with 32.0 GB of
DDR3 RAM (plus 64 GB of Page-File on a Solid State Drive),
which is configured as dual-channel bandwidth @ 2.40 GHz.
The software package includes Eclipse Jee ver. 4 (2019-09) and
IBM CPLEX ver. 12.8-64bit running on a Windows 10 Pro
machine.

7 DISCUSSION

In the power system, there are circumstances such as natural
disasters that may result in multiple element failures. Transmis-
sion lines are more vulnerable to more frequent disasters such
as hurricanes and tornados. In such situations, improving the
reliability of electricity supply by reducing unserved load and
over-generation can be achieved through preventive unit com-
mitment. Preventive unit commitment in its original form can
be formulated as a stochastic unit commitment. Alternatively,
proxy deterministic methods can be used to find an efficient
solution. In this paper, different methods were used to solve
the same test cases, with predicted transmission failure proba-
bilities due to a hurricane impact. The results were thoroughly
presented in the previous section.
A significant result of this paper is that better operation soft-

ware can improve the reliability of the network with no addi-
tional cost. As was shown, even using methods with simple
implementation, such as the worst possible case, offers a sub-
stantial reduction in UL and OG.
Stochastic preventive unit commitment emerges as the best

method among all reducing UL+OG.While other methods may
show better performance regarding just UL or OG, the results
suggest that stochastic unit commitment is more flexible and
offers superior performance. In our test cases, OG and UL have
the same negative value to the system, and as a result, methods

try to find the best solution to improve both at the same time.
As the stochastic solution highly depends on the set of mod-
elled scenarios, scenarios can be defined to give one objective
higher priority, and as a result, the solution can be optimised for
that specific objective. Hence, stochastic unit commitment can
also be adjusted to perform similarly to other methods. Another
way of biasing the solver is by manipulating the penalty values
relative to each other.
Although stochastic unit commitment is the superior method

in terms of performance, it suffers from two major drawbacks.
First, the computational burden of the model can become
prohibitive for larger systems with more constraints. Second,
the industry implementations of SCUC and SCED do not use
stochastic optimisation. Thus, a transition to stochastic unit
commitment may require substantial adjustment of the existing
energy management systems. This paper suggests that there are
efficient deterministic alternatives to a stochastic unit commit-
ment that the system operators can use without transitioning
to stochastic solvers. Adoption of these proxy deterministic
models will provide a significant portion of stochastic unit
commitment benefits without leading to issues such as com-
putational burden or incompatibility with energy management
systems. Finally, as discussed in detail in the previous sections,
the proxy deterministic models discussed in this paper are all
rather simple and can seamlessly be added to the existing unit
commitment model.

8 CONCLUSIONS

Severe weather events, such as hurricanes, leading to the out-
age of many transmission lines. These failures can be predicted
in advance as a probability distribution. Recently, a stochas-
tic unit commitment model is proposed that explicitly models
such line outage predictions to find a preventive dispatch and
reduce network violations. While the method is effective, it is
computationally burdensome and not compatible with existing
energy management systems. This paper provided a thorough
analysis of the effectiveness of a variety of proxy determinis-
tic methods, to replace stochastic unit commitment. Network
violations, as the indicator of method effectiveness, were mea-
sured as the summation of unserved load and over-generation.
The paper showed that while stochastic unit commitment offers
superior performance, there exist a number of deterministic
alternatives that can offer the majority of stochastic unit com-
mitment’s benefits. The results, presented in this paper, suggest
that the best deterministic method for minimising the unserved
load and over-generation, in most cases, is robust optimisation
or worst possible case. This method employs the worst possi-
ble failure prediction, thereby eliminating the prediction uncer-
tainty, and offers acceptable results in comparison with stochas-
tic unit commitment. The paper also showed that an engineering
judgment rule of keeping all generation units online can min-
imise the unserved load, but leads to high levels of overgenera-
tion. The method may be used if the overgeneration issues are
properly handled by the operators. The deterministic methods
are compatible with existing energy management systems and
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can be seamlessly adopted. Additionally, they do not substan-
tially add to the computational burden of the current unit com-
mitment models, eliminating the concern about exceeding the
available time for computation. This paper demonstrated that
better operation software tools could be developed and read-
ily used to improve power system reliability during anticipated
severe weather events.
As was shown, among all the evaluated methods, the stochas-

tic method requires the longest calculation time and provides
the best quality solution. While the calculation time with the
stochastic method may not be acceptable for short time-ahead
generation scheduling, it can be useful for long time-ahead gen-
eration scheduling and planning where the calculation time has
less priority than the quality. In the same way, if the objective is
to evaluate the network weaknesses against severe weather con-
ditions, higher quality may better fit. Hence, a decision between
the calculation time and the quality of the solution should always
be based on the desired application.
Finally, while the authors did not detect any scalability issues

with smaller and larger networks, with networks much larger
than 2000 buses, the required amount of memory and calcu-
lation time may be unreasonably large. It should be noted that
the current study is limited to the conditions when no islanding
occurs in the network because of the severe weather conditions.

9 FUTURE RESEARCH

In the current paper, comparisons between the stochastic-based
method and proxy deterministic rules were made, when each of
the methods was used independently and with their standard
format. While in a few methods such as optimised spinning
reserve, some tuning was performed, yet other enhancements
are possible. It may be possible to combine different meth-
ods to create new ones with better efficiency than each method
individually. A good example is a stochastic formulation with
only two scenarios: one scenario representing the worst possible
case, and the second scenario representing the optimised spin-
ning reserve.
In addition to the studied proxies in this paper, there are

other promising techniques that can conserve the quality of the
stochastic method while may reduce the calculation time. As
in this study, all optimisations were made without any warm-
start techniques, providing warm-start values (a feasible solution
close to final optimised solution) can significantly reduce the
calculation time, especially with the stochastic method. Trained
supervised machine learning model with the ability to predict
the solution may be the best example of these techniques. It
should be mentioned that as the predicted values will be used
as a feasible solution, the trained model does not need to have
perfect accuracy in predictions.
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